(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOLS</th>
<th>ENGINEERING, NATURAL SCIENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT/UNITS</td>
<td>COMPUTER ENGINEERING AND INFORMATICS DEPARTMENT, DEPARTMENT OF MATHEMATICS</td>
</tr>
<tr>
<td>TITLE OF MASTER’S DEGREE</td>
<td>MSC in Data Driven Computing and Decision Making</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>POSTGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>MCDA103</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>B</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>DATA-DRIVEN PROBABILISTIC MODELS IN DECISION MAKING PROCESS</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>3</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

general background, special background, specialised general knowledge, skills development

General background

PREREQUISITE COURSES:

None

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS:

Yes

COURSE WEBSITE (URL)

https://eclass.upatras.gr/courses/MATH1071/
https://eclass.math.upatras.gr/courses/MATHDEP241/

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The goal of this course is to present and apply a set of mathematical techniques to be used for the design, performance and reliability of systems operating under probabilistic rules. For the optimal design of these systems, it is first necessary to identify their structural elements, such as arrival and service processes, by using data-based methods. On the other hand, their optimal performance is closely relying by their reliability, i.e., the probability that the system will perform its intended function during a specified time period under stated conditions. In such a scenario, we aim to study and estimate the reliability of components and systems using lifetime and other data. The course consists of two parts. In the first part, we present data-based techniques to optimize the performance of service systems, while in Part B, we focus on probabilistic models and methods for the study of failure data in the reliability of engineering systems. In the following, we present the detailed course schedule.

Upon completing the course, students are expected to be able to:

- understand the basic concepts of operation and the structure of the problems faced by
service systems,
• develop solutions that provide optimal performance measures according to the desires of
 the decision-maker,
• compare alternative scenarios based on these measures and systematically approach the
 exploration of the structure of these solutions by thoroughly analyzing how a system works.
• develop and implement mathematical / analytical models to solve these problems,
• understand strategic and operational decision levels and be able to choose the appropriate
 method of solution to support any type of decision,
• use appropriate software to help make decisions about underlying operating systems that
 exploit the data provided by their operation,
• be familiar with methods of collecting data from reliability and develop and implement
 statistical methods of analyzing and interpreting these data to provide engineering
 information,
• understanding how the design of a system, such as a telecommunications system or an
 energy distribution system in a large city can lead to improved system performance,
• identify proper system models that appear in modern bibliography and study their
 attributes related to their reliability by using probability and statistical methods.

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas
Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Shewing social, professional and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking

• Decision making.
• Ability to work in an interdisciplinary environment.
• Autonomous work.
• Team work.
• Ability to promote free, productive and inductive thinking.

PART A: Service Engineering
Service sector is central in the life of post-industrial societies - more than 70% of the Gross National
Product in most developed countries is due to this sector. Important examples are healthcare systems
(hospitals), financial services (banks) and telephone and internet services. In concert with this state of
affairs, there exists a growing demand for high-quality multi-disciplinary research in the field of services,
well as for a significant number of Service Engineers, namely scientifically-educated specialists that
are capable of designing service systems, as well as solving multi-faceted problems that arise in their
practice. The course will provide a framework for modeling service systems and techniques that are
used to design, analyze, and operate service systems. Our teaching approach is data oriented: examples
from various service sectors are presented at lectures and homework assignments, with the call center
industry being the central application area. In this course, a service system is viewed as a stochastic
network. Thus, the main theoretical framework is queuing theory, which primarily involves a large
class of stochastic models. However, the subject matter is highly multi-disciplinary; hence alternative
frameworks are useful as well, including ones from Statistics, Psychology, and Marketing.

PART B: Engineering Reliability
The mathematical theory of reliability has grown out of the continually increasing demands of technology.
Reliability is the probability of a system performing its purpose adequately for a period of time intended
under operating conditions encountered. The teaching of this part of the course concentrates on coherent system reliability, failure data analysis and maintenance policies. It will be developed the use of probability theory for the study of reliability and life time of the systems, via appropriate probabilistic models and statistical methods for studying reliability data.

(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Lectures (face to face)</th>
</tr>
</thead>
</table>
| USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY | • Support of the course via the online platform eClass of University of Patras.
• Use of specific software (Excel, 4CallCenters etc.) |
| TEACHING METHODS | The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS. |
| Activity | Semester workload |
| Lectures | 39 |
| Study (no driven) | 100 |
| Solving suggested exercises | 45 |
| Final examination | 3.5 |
| **Total number of hours for the Course (25 hours of work-load per ECTS credit)** | **187.5** |

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

Assessment Language: Greek
Assessment Language for Erasmus students: English

Assessment methods:

for Part A:
1. Homework (30%): Theoretical, empirical and practical. Empirical analysis will include actual data from a bank's helpdesk (http://ie.technion.ac.il/serveng2013S/callcenterdata/index.html). Practical analysis will be based on two tools: SEEStat and 4CallCenters. The first tool, developed at SEECenter, provides an online graphical environment with transaction data (call centers, hospitals). The second tool supports manpower management (staffing).
2. Presentation and development of topics from international bibliography / articles (20%).
3. Written examination (50%).

For Part B:
1. Presentation and development of topics from international bibliography / articles (20%).
2. Written examination (80%).
3. Exercises will be given during the lectures.

Minimum passing grade: 5
Maximum passing grade: 10