COURSE OUTLINE

(1) GENERAL					
SCHOOLS	ENGINEERING, NATURAL SCIENCES				
ACADEMIC UNIT/UNITS	COMPUTER ENGINEERING AND INFORMATICS DEPARTMENT,				
	DEPARTMENT OF MATHEMATICS				
TITLE OF MASTER'S DEGREE	MSc in Data Driven Computing and Decision Making				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	DDCD111	DDCD111 SEMESTER Autumn			
COURSE TITLE	Special Topics of Artificial Intelligence				
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits an course, give the weekly teaching ho	NG ACTIVITIES nents of the course, e.g. lectures, re awarded for the whole of the nours and the total credits				
Lectures 2					
Recitation sections			1		
Add rows if necessary. The organisation of teaching and the teaching			To	tal	7.5
methods used are described in detail at (d).	ail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised general knowledge, skills development				
PREREQUISITE COURSES:	Undergraduate course in Artificial Intelligence				
LANGUAGE OF INSTRUCTION and	Greek. Instruction may be given in English if foreign students				
EXAMINATIONS:	attend the course.				
IS THE COURSE OFFERED TO	Yes (in English)				
ERASMUS STUDENTS	<u> </u>				
COURSE WEBSITE (URL)	https://eclass.upatras.gr/courses/CEID1178/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes
 - After the successful completion of the course, the student:
 - Will be able to represent knowledge in first-order logic language without or with use of equality and make proofs.
 - Will be able to apply capabilities offered by theorem provers in theoretical and practical problems.
 - Will be able to represent knowledge in description logics and make reasonings.
 - Will be able to design and implement an ontology and conduct the necessary reasonings with it.
 - Will be able to interpret and extract from an OWL program corresponding ontology.
 - Will be able to compare and apply machine learning algorithms to data sets related to classification problems, using machine learning tools.
 - Will be able to select and apply deep learning architectures to data sets related to classification problems.

In general, the student will have obtained advanced skills for the design and implementation of

reasoning and decision making systems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,			
with the use of the necessary technology			
Adapting to new situations			
Decision-making			
Working independently			
Team work			
Working in an international environment			
Working in an interdisciplinary environment			
Production of new research ideas			

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Others...

Decision-making

Working independently

Production of new research ideas

Production of free, creative and inductive thinking

(3) SYLLABUS

Knowledge Representation and Reasoning with First-Order Logic without or with use of Equality. Strategies for Reasoning Control. Theorem Provers. Description Logics. DL Reasoners. Ontologies and Semantic Web. Ontology Engineering. Ontology Language OWL. Machine Learning-Classification Algorithms. Ensemble Classifiers. Deep Learning.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
	Use of ici in teaching (lectures in electronic form, internet			
COMMUNICATIONS TECHNOLOGY	sources, use of software tools for training etc.) and in			
communication with students	communication with students (mailing list, course web site).			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	26		
described in detail.	Recitation sections 13			
fieldwork, study and analysis of bibliography,	Use of tools	39		
tutorials, placements, clinical practice, art	Projects implementation	110		
workshop, interactive teaching, educational				
etc.				
The student's study hours for each learning	Course total	188		
directed study according to the principles of the				
ECTS				
STUDENT PERFORMANCE EVALUATION	Three projects, one in theorem provers, one in ontologies			
Description of the evaluation procedure	and one in machine learning.			
Language of evaluation, methods of evaluation,	First project is experimental, the second is of development			
summative or conclusive, multiple choice	type (design and implementation) and the thir			
ended questions, problem solving, written work,	experimental			
essay/report, oral examination, public	experimental.			
presentation, laboratory work, clinical	Projects will be presented in the class and will be assessed.			
examination of patient, art interpretation, other	The final mark will be produced by a combination of the			
Specifically-defined evaluation criteria are aiven and if and where they are accessible to	marks of the three projects.			
students.	Language of evaluation: Greek (English if needed, e.g.,			
	Erasmus+ students)			

(4) ATTACHED BIBLIOGRAPHY

Suggested bibliography:

- John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009.
- Steffen Staab and Rudi Studer (Editors). Handbook on Ontologies. Springer, 2004
- John Domingue, Dieter Fensel and James A. Hendler (Editors). Handbook of Semantic Web Technologies. Springer, 2011.
- Francois Chollet. Deep Learning with Python. Maning 2018.

Internet resources will be also given for each thematic section.